R-CNN 结构

对于R-CNN模型,个人是这样理解,它其实是将4个应用于不同任务的已有的算法很好的结合了起来,最终在目标检测任务中取得了不错的效果,这种结合更像是偏向于工程的方法,而不是在算法上的一种突破,当然在后续的Fast-RCNN与Faster-RCNN中模型逐步完善并整合成为一个模型,但是在R-CNN中是没有的。

R-CNN由4个部分构成:

  1. 区域建议算法(ss)
  2. 特征提取算法(AlexNet)
  3. 线性分类器(线性SVM)
  4. 边界框修正回归模型(Bounding box)

简单来说,RCNN使用以下四步实现目标检测:

  1. 在图像中确定约1000-2000个候选框
  2. 对于每个候选框内图像块,使用深度网络提取特征
  3. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类
  4. 对于属于某一特征的候选框,用回归器进一步调整其位置

区域建议算法 Region Proposal

区域建议(Region Proposal)算法在CNN之前就已经有了,而且算法不止一种,ss (selective search) 算法是比较著名的一个,此外还有EdgeBox,MSER,MCG等等算法,CS231n中对这几种算法做了一个简单的介绍,感兴趣的话可以移步到CS231n第16课时。

那么ss算法在R-CNN中有什么用呢?这要从目标检测任务开始谈起,在一副图像中要实现目标检测任务,一种最简单的思路是如果建立滑动窗,对每次滑动窗提取出来的图像做分类,如果分类结果恰好是目标的话,就实现了检测啦,目标的属性由分类器给,目标的位置由滑动窗给。但是考虑到一次滑动遍历产生的子图像数量就不小了,同时还有不同步长和窗口尺寸的情况,此时产生的待分类图像是非常多的,这种方式显然没什么实用价值,于是就有了ss算法,一种根据图像自身信息产生推荐区域的算法,它大概会产生1000-2000个潜在目标区域,照比滑动遍历的方式,这个数量已经减少了很多了。

使用了Selective Search1方法从一张图像生成约2000-3000个候选区域。基本思路如下:

  • 使用一种过分割手段,将图像分割成小区域
  • 查看现有小区域,合并可能性最高的两个区域。重复直到整张图像合并成一个区域位置
  • 输出所有曾经存在过的区域,所谓候选区域

候选区域生成和后续步骤相对独立,实际可以使用任意算法进行。

合并规则

优先合并以下四种区域:

  • 颜色(颜色直方图)相近的
  • 纹理(梯度直方图)相近的
  • 合并后总面积小的
  • 合并后,总面积在其BBOX中所占比例大的

第三条,保证合并操作的尺度较为均匀,避免一个大区域陆续“吃掉”其他小区域。

例:设有区域 a-b-c-d-e-f-g-h。较好的合并方式是:ab-cd-ef-gh -> abcd-efgh -> abcdefgh。
不好的合并方法是:ab-c-d-e-f-g-h -> abcd-e-f-g-h -> abcdef-gh -> abcdefgh。

第四条,保证合并后形状规则。

例:左图适于合并,右图不适于合并。

上述四条规则只涉及区域的颜色直方图、纹理直方图、面积和位置。合并后的区域特征可以直接由子区域特征计算而来,速度较快。

多样化与后处理

为尽可能不遗漏候选区域,上述操作在多个颜色空间中同时进行(RGB,HSV,Lab等)。在一个颜色空间中,使用上述四条规则的不同组合进行合并。所有颜色空间与所有规则的全部结果,在去除重复后,都作为候选区域输出。

特征提取算法

这里的特征提取算法其实就是卷积神经网络,R-CNN中使用的是AlexNet,但是作者(Ross)并没有把AlexNet当做分类器来使用,而是只用了网络的特征层做ss算法输出的图像的特征提取工作,然后第7层特征给了SVM分类器,第五次特征给了Bounding Box回归模型。

线性分类器

R-CNN使用了线性SVM分类器,需要说明的是,目标检测任务是有分类的功能的,比如一个任务是检测猫和狗,那么除了要框出猫和狗的位置之外,也需要判断是猫还是狗,这也是SVM在R-CNN中的作用。所以待检测物体有几类,那么就应该有几个二分类的SVM分类器,在上面的例子中,就需要两个二分类分类器了,分别是“猫-非猫”模型和“狗-非狗”模型,在R-CNN中,分类器有20个,它的输入特征是AlexNet提取到的fc7层特征。

由于负样本很多,使用 hard negative mining 方法。
正样本: 本类的真值标定框。
负样本: 考察每一个候选框,如果和本类所有标定框的重叠都小于0.3,认定其为负样本

边界框修正回归模型

Bounding box也是个古老的话题了,计算机视觉常见任务中,在分类与检测之间还有一个定位任务,在一副图像中只有一个目标,然后把这个目标框出来,用到的就是Bounding box回归模型。在R-CNN中,Bounding box的作用是修正ss推荐的区域的边界,输入的特征是AlexNet的第五层特征,与SVM分类器一样,它也是每一个类别都有一个模型,一共20个。

R-CNN 的训练

R-CNN训练了CNN,SVM与Bounding box三个模型,因为ss不用训练。ss在生成了1000-2000个推荐区域之后,就和训练任务没关系了,训练样本是由ss区域生成出来的子图构建起来的。 而且三个部分的训练时独立的,并没有整合在一起。

1. 训练CNN

CNN是在ImageNet上pre-train的AlexNet模型,在R-CNN中进行fine-tune,fine-tune的过程是将AlexNet的Softmax改为任务需要的类别数,然后还是当做一个分类模型来训练,训练样本的构建使用ss生成的子图,当这些图与实际样本的框(Ground-truth)的IoU大于等于0.5时,认为是某一个类的正样本,这样的类一共有20个;IoU小于0.5时,认为是负样本。然后就可以AlexNet做pre-train了,pre-train之后AlexNet的Softmax层就被扔掉了,只剩下训练后的参数,这套参数就用来做特征提取。

2. 训练SVM

之前提到了,SVM的输入特征是AlexNet fc7的输出,然后SVM做二分类,一个有20个SVM模型。那么对于其中某一个分类器来说,它的正样本是所有Ground-truth区域经过AlexNet后输出的特征,负样本是与Ground-truth区域重合IoU小于0.3的区域经过AlexNet后输出的特征,特征和标签确定了,就可以训练SVM了。

3. 训练Bounding box回归模型

Bounding box回归模型也是20个,还是拿其中一个来说,它的输入是AlexNet conv5的特征,注意这里的20指的是类的个数,但是对一个Bounding box来说,它有4套参数,因为一个Bounding box回归模型分别对4个数做回归,这4个数是表征边界框的四个值,模型的损失函数如下:

其中i是样本个数,*就是4个数,他们分别是x,y,w,h,其中(x,y)是中心位置,(w,h)是宽和高;P是ss给出来的区域,它由Px,Py,Pw,Ph四个数决定,这个区域经过AlexNet后再第五层输出特征,然后在特征每一个维度前都训练一个参数w,一组特征就有一组w,随4组做回归就有4组w;最后一个数就是t,它同样有4个数tx,ty,tw,th,是这样计算出来的:

$$t_{x} = (G_{x} - P_x) / P_w$$

$$t_y = (G_y - P_y) / P_h$$

$$t_w = \log(\frac{G_w}{P_w})$$

$$t_h = \log(\frac{G_h}{P_h})$$

而G就是经过修正后的边界框,它还是4个数Gx,Gy,Gw,Gh。通过上面的公式可以看到,t是边界框的偏差。 最后就是到底什么样的ss区域能够作为输入,在这里是IoU大于0.6的。 用一句话总结Bounding box回归模型就是:对于某一个类的回归模型而言,用IoU>0.6的ss区域经过卷积后作为输入特征,用同一组特征分别训练4组权值与之对应,对边界框四个属性值分别做回归。

经过上面三个独立的部分,R-CNN的训练就完成了,可以看到,确实是非常麻烦,这不仅仅体现在速度慢上,过程也及其繁琐,因为每一步都需要重新构建样本。

R-CNN的测试

  1. ss算法提取1000-2000个区域;
  2. 对所有的区域做尺寸统一,为了CNN网络能接受;
  3. 用AlexNet网络提出两套特征,一个是fc7层的,一个是con5层的;
  4. 对于一个fc7区域的特征,分别过20个分类器,看看哪个分类器给的分数最高,以确定区域的类别,并把所有的区域一次操作;
  5. 对上述所有打好label的区域使用非极大值抑制操作,以获取没有冗余(重叠)的区域子集,经过非极大值抑制之后,就认为剩下的所有的区域都是最后要框出来的;
  6. 重新拿回第5步剩下的区域con5层的特征,送入Bounding box模型,根据模型的输出做出一次修正;
  7. 根据SVM的结果打标签,根据修正的结果画框;
  8. 结束
1
2
3
4
转载自:    
http://mp.weixin.qq.com/s?__biz=MzUyMjE2MTE0Mw==&mid=2247484206&idx=1&sn=f9084165a4673affd8e23ac97f707eb8&chksm=f9d15db6cea6d4a04a777d45ae3e3f1a3ef6f657352c98db9664084fe4b4f802273dde7ac943&scene=21#wechat_redirect
参考
https://blog.csdn.net/shenxiaolu1984/article/details/51066975